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Modeling Internet backbone traffic at the flow level

Chadi Barakat, Patrick Thiran, Gianluca lannaccone, Christophe Diot, Philippe Owezarski

Abstract—Our goal is to design a traffic model for non or a UDP (User Datagram Protocol) stream (described by
congested Internet backbone links, which is simple enough to source and destination IP addresses, source and destination
be used in networklope.ratlon, while being as general as pOSS|bIe.port numbers, and the protocol number), or it can be a
The proposed solution is to model the traffic at the flow level by S . o .

a Poisson shot-noise process. In our model, a flow is a genericdestlnatlon address prefix '(e.g., destlnathn IP address in the
notion that must be able to capture the characteristics of any form a.b.0.0/16). Flows arrive at random times and share the
kind of data stream. We analyze the accuracy of the model with available bandwidth in the network according to certain rules.
real traffic traces collected on the Sprint IP (Internet Protocol) From a simplicity standpoint, it is much easier to monitor flows

backbone network. Despite its simplicity, our model provides a than to monitor packets in a router. Tools such as NetFlow
good approximation of the real traffic observed in the backbone Iread ide fi inf ion in Ci ok

and of its variation. Finally, we discuss the application of our alrea y_ provide flow information in Cisco rout S

model to network design and dimensioning. In this paper, we propose a model that relies on flow-

i . . . level information to compute the total (aggregate) rate of
Index Terms— Traffic modeling, Poisson shot noise, noncon- . . .
gested IP backbone links, measurements. data observed on an IP backbone link. We are interested in
capturing the dynamics of the traffic at short timescales (i.e.,
in the order of hundreds of milliseconds). For the purpose
|. INTRODUCTION of modeling, the traffic is viewed as the superposition (i.e.,
Modeling the Internet traffic is an important issue. It ignultiplexing) of a large number of flows that arrive at random
unlikely that we will be able to understand the traffic chatimes and that stay active for random periods. As explained
acteristics, predict network performance (e.g., for Quality g@rlier, a flow is a generic notion that must be able to capture
Service (Qo0S) guarantees or Service Level Agreement (SLIRE characteristics of any kind of data stream.
definition), or design dimensioning tools without analytical In contrast to other works in the literature (e.g., [3], [7],
models. The successful evolution of the Internet is tightit8]), we choose to model a link that isot congested
coupled to the ability to design simple and accurate modelécongestion possibly appears elsewhere on the flow path). This
The objective of this work is to design a traffic model tha@ssumption is valid, and is in fact the rule, for backbone
can be used by network administrators to assist in netwdiks that are generally over-provisioned (i.e., the network
design and management. Such a model needs to be Simp|e,i§ed’e5igned so that a backbone link utilization stays below
it has to be fast to compute and to rely on simple paramet&@% in the absence of link failure [15]). It is driven by our
that can easily be acquired by a router. Currently, netwofRain objective to provide a link dimensioning tool usable in
operators have very basic information about the traffic. Thé&@ckbone network management.
mostly use SNMP [10] that provides average throughput The contribution of this work is the design of a flow-based
information over 5 minutes intervals. An analytical modelnternet traffic model using simple mathematical tools (Poisson
could provide more accurate information on the traffic. It couldhot-noise). Thanks to the notion sffiotswe introduce in the
be used in various applications such as detection of anomalipose of modeling flow transmission rates, our model is
(e.g., denial of service attacks or link failures), prediction gible to compute the total rate of data in the backbone using
traffic growth, or assessment of the impact on network traffftows’ characteristics (i.e., arrivals, sizes, durations). Once the
of a new customer or of a new application. Consequently,n3odel is introduced, the paper focuses on its confrontation
second desired property of the model is to be protocol aff real data collected on the Sprint IP backbone network.
application agnostic: it needs to be general enough to evaluatés confrontation illustrates the efficiency of the model in
link throughput independently of the application nature and 6pmputing the traffic in the backbone and its variation. We then
the transport mechanism. discuss the application of our model to network design and
Packet level models for high speed links are difficult to camanagement. In particular, we study the impact of the different
ibrate, because of the high level of multiplexing of numerou@rameters of the model (flow arrival rate, flow size, flow
flows whose behavior is strongly influenced by the transpdttration) on the characteristics of the traffic in the backbone.
protocol and by the application. In addition, monitoring the In the next section, we survey the related literature and
traffic at the packet level becomes critical at OC-192 and aboResition our contribution. Section Ill describes the traces we
link speeds. use throughout the paper for the validation of our model.
Recently, a new trend has emerged, which consists lih Section IV, we present our model and we analyze its
modeling the Internet traffic at the flow level (see [5] an@€erformance in Section V. Section VI explains how shots can
the references therein). A flow here is a very generic notioRe determined, and Section VIl discusses some issues related
It can be a TCP (Transmission Control Protocol) connectidfl the practical use of our model. In Section VIII, the model
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. . Date Length | Avg. Link Utilization
is confronted to the' real .tra'ces..We d|§cuss the use qf our Nov 8th_ 2001 7h 273 Mbps
model to network dimensioning in Section IX. Conclusions Nov 8th, 2001 10h 180 Mbps
and perspectives on our future work are presented at the end. Nov 8th, 2001 6h 262 Mbps
Nov 8th, 2001 | 39h 30m 26 Mbps
Sep 5th, 2001|  10h 136 Mbps
Il. RELATED WORK Sep 5th, 2001 7h 187 Mbps
Sep 5th, 2001  16h 72 Mbps

Many authors ([11], [14], [21], [24]) have analyzed the TABLE |

Internet traffic and have shown that it behaves in agreement
with long range dependent and asymptotically self-similar pro-
cesses. This finding made a revolutionary step departing from

more traditional short-range dependent Markovian models. . . . . .
discuss later in more details the consequence of this analysis

The other body of the literature (e.g. [5], [7], [18]) studies .

. : . ; |Pterval on our observations.
fairness issues by modeling Internet traffic at the flow level. . . .

We apply the model to each interval and we validate its

The main objective is to show how the capacity of theﬁ_ _ . g th Hic. We f he fi
network is shared among the different flows, or equivalently, iclency In computing the traffic. We focus on the Tirst two
ments of the total data rate, namely the mean and the

to compute the response times of flows. Processor sharlng. o ; . .
%|ance. Considering the variance in addition to the mean

SUMMARY OF OC-12LINK TRACES

gueues [20] are used to model congested links in the netonI
In [5], an M/G/o model is proposed for the number of activé®

flows on a non-congested backbone link. It coincides wi Kb b hiah 30% q h
a particular case of our model where all flows would ha/@ickbone can be as high as 30% compared to the mean.

exactly the same rate. In [7], a multi-class processor shariéJ € |m_por_tance of the f'rSt tV\.'O mqments of_the t”.imc N
queue is used to compute the queue length and the packet ensioning bacl_<bone I!nks will be illustrated in Sectlon. IX.
probability in an Active Queue Management buffer crossed by FOr €ach 30 minutes interval, we measure the coefficient
TCP flows of different sizes. The average response time @ variation of the total ratgp (standard deviation divided
a TCP flow is obtained. Note that all the above flow-basdly theé mean), and we compare it to the value given by the
models make the assumption that flows arrive according tg"¥pdel- Our model only requires information on flows, which
homogeneous Poisson process. we derive from the traces (e.g., average arrival rate of flows).
Our model is different from the above works in that (i) In the measurements, we use two definitions of “flow”:
it is designed for non congested links as those found in tki¢ Flow defined by5-tuple which is a stream of packets hav-
backbone, (i) it uses any flavor of flow definition to modelnd the same source and destination IP addresses, same source
the variation of the traffic, and (iii) it focuses on the variatio@nd destination port numbers, and same protocol number.
of the traffic, a performance measure of particular intere@t Flow defined byprefix which is a stream of packets having
for network engineering (i.e., provisioning, SLA definitionthe same /24 destination address prefix (i.e., only the 24 most
anomaly detection, etc.). significative bits of the destination IP address are taken into
account).
In both cases, the size of a flow is measured in bytes,
while the duration is equal to the time difference between
We consider data collected from OC-12 (622 Mbps) linkthe first and the last packet of the flow. In order to identify
on the Sprint IP backbone. The monitored links are ovethe end of a flow, we use a fixed timeout of 60 seconds: if
provisioned so that the link utilization does not exceed 50%e timeout expires before recording any additional packet, the
in the absence of link failures. The utilization is measureftbw is considered completed. A flow made of only one packet
over relatively long time intervals, for example the 5 minuteis discarded (the duration would be zero), and that packet is
period given by SNMP. In short, the infrastructure we use ot counted for the purpose of the mean and the variance of
collect packet traces consists of passive monitoring systethe measured total rate. Flows that belong to more than one
that tap optical links between access routers and backb@®eminutes interval are split over the intervals they overlap. We
routers (see [15] for details on the monitoring infrastructurefound that this artificial splitting affects only a small number
Every packet on those links is timestamped and its first 44 flows, as shown in Figure 1. The graph on the left-hand side
bytes are recorded to disk. shows the cumulative number of flows that arrive during one
In this paper, we present data from 7 different intern@0 minutes interval. We use the second definition of flow (i.e.,
POP (Point-Of-Presence) links collected on September 5th d@d prefix) for this graph, since the splitting of flows has more
November 8th 2001 in three different POPs of the backborimpact with this definition than with the first one (durations
Table | provides a summary of the traces. The traces haseflows are longer in average with the second definition).
different link utilizations (ranging from 26 Mbps to 262The second graph is a zoom around O of the first one. The
Mbps), resulting in different trace lengths. arrival rate remains pretty constant throughout the 30 minutes
We divide each trace into 30 minutes intervals. We trieidterval, except for the first 0.4 seconds, where we count only
various intervals and we found that 30 minutes is a good comround 15,000 extra flows that are the continuation of flows
promise in term of (i) keeping the arrival process stationargtarted in the previous interval, out of a total of 680,000
and (ii) giving enough points for the analysis of our model. Wiows. We consider therefore that the splitting of flows on

ows a better characterization of backbone traffic. As we
ill see, the variability of the traffic on some links of the

IIl. M EASUREMENT TESTBED
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these intervals has a nonzero, yet marginal effect on the arrivf;’a .l |
process, and in order to keep the model tractable, we do r@tm L i
correct for these effects. 5 ‘

As we mentioned in the Introduction, our model can operatgé °% s 10 15 » TR
with any definition of flow. The definitions we consider in this Measurements (seconds) n

paper are ':]0 more thap two examples. of particular 'ntereﬁib. 2. Distribution and auto-correlation of inter-arrival timgg, 1 —7Tn }
corresponding to two different aggregation levels.
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deviate from the diagonal. Although it is a deviation from
IV. THE MODEL our modeling assumptions, neglecting this heavy tail strongly
In this section, we describe the model (Poisson shot-nois#nplifies the computations without impacting too much the
used for data flows arriving on a backbone link. It is based onodel accuracy.

the following two assumptions. Denote byT,,, n € Z, the arrival time of the:-th flow, by S,,
Assumption 1:Flow arrivals follow a homogeneous Poissorits size (e.g., in bits), and b#,, its duration (e.g., in seconds).
process of finite rate. A flow is called active at timet whenT,, <t < T,, + D,.

This assumption can be relaxed to more general procesBegdine X,,(t — T;,) as the transmission rate of theth flow
such as MAPs (Markov Arrival Processes) [1], or non homoget time ¢ (e.g., in bits/s), withX,, (¢t — T;,) equal to zero for
neous Poisson processes [6], but we will keep working with< T,, and fort > (T;, + D,,). In other words X,,(t —T,) is
it for simplicity of the analysis. Poisson might be the rightero if flow n is not active at time. We call X,,(-) the flow
model if we consider recent findings by [2], [8] about theate functionor shot X,,(-) depends orS,,, D,, and on the
process of flow arrivals in the backbone of the Internet, whedgynamics governing the flow rate. For example, for TCP flows,
a large number of flows are multiplexed. It is shown in [8the dynamics of the flow rate is a function of the dynamics of
that the distribution of flow inter-arrival times is very wellthe window size, which in turn is a function of the round-trip
approximated by a Weibull with a shape parameter smalléme of the TCP connection, and of the features of the packet
than 1, and that as the traffic intensity increases, flow intdoss process [1], [9], [12], [23]. Note that
arrival times become independent, whereas the Weibull shape D,
parameter gets close to 1. Thus, the flow arrival process tends / Xp(w)du = S,. (2)
to be in good agreement with a Poisson process. This limit 0
is explained by well known results on the superposition @ur second assumption o, (-) is as follows.
marked point processes. The Poisson property is also knowrAssumption 2:Flow rate functions are independent of each
to apply to aggregates at the session level [14], [22], [24]. Not¢her and identically distributed.
that since our model does not depend on a particular definitionThe assumption on the independence of flow rate functions
of flow, one can group packets into sessions that have Poissorbased on the following facts: (i) The link we consider
arrivals, and apply the model at the session level. is a backbone link kept under-utilized by engineering rules.

We computed the distribution and auto-correlation of thié does not therefore experience congestion, and so it does
flow inter-arrival times on the collected traces. Indeed, waot introduce dependence among the flow rate functions. (ii)
found that they are close to those of a homogeneous Pois3de flows sharing this link have a large number of different
process having the same rate. We show the results for amirces and destinations, and use many different routes before
30 minutes interval in Figure 2. The other 30 minutes intervalteing multiplexed on the backbone link. The assumption of
provide similar results. This figure corresponds to the twidentical distribution can be relaxed by introducing multiple
definitions of flow. The graphs on the left-hand side show tlaasses (based on transport protocol, flow size, or any other
guantile-quantile plot (gg-plot) of flow inter-arrival times, andnetric). We keep however a single class in this paper, hence
those on the right-hand side show their coefficient of aut¢X,(-)} are iid (independent and identically distributed). A
correlation for different lags. The low level of correlation igdirect consequence of Assumption 2 is that sequefégs
clear from the graphs. The distribution of flow inter-arrivahnd {D,,} also form iid sequences, although for the same
times still has a slightly heavier tail than exponential, thaff,, and D,, are obviously correlated: the larg8y,, the larger
can be well modeled by a Weibull with shape parameter 0.98, (in general). Finally, we assume tha{D,] is finite.
in both figures. This heavy tail is of small importance for We computed the auto-correlation of sequen{gs} and
our model given the relatively small number of points thafD,,} on our traces. We found indeed that these sequences
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By differentiating with respect ta and then settingv to
exhibit little correlation. The result is illustrated in Figures 30, the LST in Theorem 1 can give us all the moments of the
where we show the auto-correlation coefficients of the two setal rate in the stationary regime. In particular, the two first
quences for one 30 minutes interval, using our two definitiomsoments are as follows:
of flow. The auto-correlation drops quickly to zero after lag-0. Corollary 1: The average of the total rate B[R(t)] =

Define R(t) as the total rate of data (e.g., in bits/s) on thgp [S,], its variance isVz = AE fODn X2(u)dul.

2
modeled link _at timet. It is the result of the_addltlon of the The mean and variance of the total rate afe two important
rates of the different flows. We can then write

performance measures an ISP needs to know in order to
R(t) = Z X, (t —Tp). (2) Properly dimen_si_on the links of its network. A backbone link

neZ has to be provisioned so as to absorb the average of the total
rate as well as its variations. In contrast to the average, our
,model tells us that the variance of the total rate is a function
of the durations of flows and their rate functions. This requires
some assumptions (or more information) on the dynamics of
flow rate. Next, we provide approximations of the variance of
R(t) for some particular flow rate functions.

This model is aPoisson shot-noise proce$8], [13], where
the term “shot” is synonymous here of “flow rate function
In the particular case wher¥,,(t — T,,) = lie[r, 7 +Dn]}
that is, where shots are rectangles of height 1 and lehgth
the process (2) is the number of clients found at timi
an M/Ghko queue [19], if clients are identified with flows.
We will allow however for “shots” with a more general shape
than a rectangle of height 1, and we will see that this is indeBd Two particular shot shapes
essential to characterize the total data rate on backbone linksBefore moving to more general models, let us examine the
Next, we look for the moments of the proceR$ét) in the two particular cases shown in Figure 4a and 4b.
stationary regime. We always assume that we have reached) Rectangular shotsFirst, we consider the case where
the stationary regime, which exists for finiteand E [D,,]. the rate of a flow is constant and equal $q/D,, (which
We state a result for the Laplace Stielties Transform (LSTjves the rectangular shot of lengih, and heightS,,/D,,
of R(t), that allows to compute all moments &f(¢), as well of Figure 4a). Corollary 1 yields that the variance ft) is
as its first order distribution. For the particular shapes of thegjual toVz = AE [S2/D,,].
shot presented in Figure 4, we will see that with only three The rectangular assumption is the simplest one; the only
parametersX, E[S,] andE [S2/D,]), our model is able to generalization from an M/Gb model is the height of the
compute the average and the variation of the backbone traffishot” which is now variable. With this assumption, we only
capture the variation of the total rate caused by the variation
V. PEREORMANCE ANALYSIS of N(t) and by the variation of the ratié‘n/Dn. It is easy
to show that among all possible shot shapes, rectangular shots
achieve the lowest variandg; of the total rate [4, Theorem 3].
We state in this section the expression of the LSTR¢f),  2) Triangular shots:Another assumption is to consider that
which we denote agi(w) = E [e7""], Re(w) > 0. We the rate of a flow linearly increases with time (Figure 4b). This
also give the expressions of the average and variand&©f assumption is inspired from the dynamics of TCP transfers
which we denote a& [R(t)] and Vg, respectively. that form a large majority of the flows in IP backbones [15].
Let N(t) be the number of active flows at tinteAssump- |n Section VI-B, we will see that triangular shots are indeed
tions 1 and 2 imply that the total data rafe(t) at time¢ representative of TCP flows under some conditions. For a flow
is the sum of a random numbé¥(¢) of iid random variables of size S,, and of durationD,,, the rate is assumed to increase
which are the rates of active flows. This leads to the followirtheany from zero to2S,,/D,,, with a mean equal t&,,/D,,.
expression off?(w). At a time ¢ betweenT,, and T}, + D,,, we can writeX,, (¢t —

A. LST and moments of the total rate
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T,) = (25,/D?)(t—1T,). Corollary 1 yields that the variance TCP flows). An advantage of this method is that it allows the

of R(t) is equal toVy = %]E [S2/D,]. Again, the variance is simultaneous use of different shots for flows having different

a multiple of E [SEL/Dn]. As expected, the variance is largedynamics. Its drawback is the difficulty to model flows that

than in the rectangular case (by a multiplicative fact¢s). do not have a well defined dynamics (e.g., uncontrolled UDP
flows, flows defined by their address prefixes).

V]. DETERMINATION OF THE SHOT We illustrate this method by modeling the shot of a long-
lived TCP flow. Even though long-lived TCP flows are cur-
rently not the majority among flows in the Internet, they
are known to carry an important part of Internet traffic [15].
addressed in this section. Moreover, this type of flows is expected to grow considerably

There are two different approaches to compiitg(-). The with the arrival of data-greedy applications as Grid and Peer-
first one consists in deriving it directly from measurementiO-P€er. We present results for the variance of backbone traffic
and is developed in Subsection VI-A. The second one uska which is given by Corollary 1.

information from the protocol governing the flow dynamics, We consider a fluid model for TCP inspired from [1]__ cher
and is developed in Subsection VI-B. models, such as [12], could also be used. The transmission rate

X, (t) is governed by the Additive-Increase Multiplicative-
o Decrease (AIMD) mechanism of TCP: between congestion
A. Measurement-based derivation of shot shapes events (we also call them loss events, since they are usually
The first method is based omeasurementsit has the the times at which a packet loss is detected by the sender),
advantage of being protocol and application “agnostic”, whidhe rate of TCP increases linearly with a slopg, which is
preserves the generality of the model. The method consisigersely proportional to the square of the average round-trip
in fitting a parametric model of the shaoX,,(-) = w4(-), time of the connection [1]4,, is assumed to be time-constant,
wherexzy(-) is ana priori chosen function parameterized bybut is a random variable depending (8,, D,,). When a loss
a parameter vectof, which must satisfy the constraint (1).event appears, the rate of TCP is divided by two.Tgtlenote
Vector 6 is then computed to minimize some error functionghe time at which thé-th loss event occurred, and lgtbe the
between the experimental value of the distribution (or sontigne elapsed between tligh and the(l + 1)-th loss events,
moments of R(¢)), and the value computed by Theorem 15, = T, — T,. As in [1], we assume that the sequence of
From now on, we restrict our attention to the variancé¢f), inter-loss times{r;} is a stationary, ergodic renewal process,

Once we have the shot functiol,,(-), it is thus easy to
compute the moments of the aggregate rAfe). But what
shot functionX,,(-) should we choose ? This key question i

and we computery(-) so that which is independent ob,, and 4,,.
D, As the duration of theth flow is limited toD,,, we consider
Vi = \E / :L'g(u)du] , (3) the extension of the TCP flow to allc R, and denote,, ()
0 its rate. We have thux(,,(t) = Y,,(t)10<¢<p,},» Wherel 4y

where Vx is the actual empirical variance of the measureia the indicator that has occurred. To computéz we only
7 P need X, (¢t) for 0 <t < D,, where it coincides witty;, (t).
aggregate rate.

. We assume that the AIMD mechanism is the only one to
As we have two equations (1) and (3), we need therefore ; s .
. S govern the dynamics df,, (¢), which is then stationary because
two parametersy = (a,b). A simple function is a power of the assumptions above [1]. It thus obeys the followin
function x4 (u) = aub, with b > 0, as illustrated in Figure 4. b ' y 9

It includes, as particular cases, the rectangulas 0) and the equation for allt € [Tl’Tlil): -
triangular ¢ = 1) shots. Yo(t) =Yn(T)) /24 An(t —T)), 4)

: . B b1 . B
Solving (1) yields that = (b+1)Sn/Dy"", and plugging whereY, (T) is the rate of thexith TCP flow just before the
this value in (3) we get : — .
I-th loss event (i.eY,,(T)) = lim, 7, ,_7, Ya(t)).
N Uk )? Sy Using this fluid model, we find an expression that upper
r D,|’ bounds the variance of Internet backbone traffic in the steady

T2+ 1
We deduce an estimate &f based on the measurement optateVg, and that can be safely used instead of the variance for
Vi (and clearly of\ andE [SQ/D ]) We findb — x — 1 + network provisioning. This expression is stated in Theorem 2,

A (k) — k k -
VR — R, with & = Vp/(AE [52/D,]) (note thatr > 1). where#*) = E [7}'] /E* [r;] denotes thei-th moment § €

Of course, the introduction of a larger number of parametelg% tv(;;etr:ulaoslgtz:/-(lezst: Ell'rr?eesr,er?woggalclnzv?: thbgt tt:eewr;%zndstlme
allows to fitzy(-) to more moments than simphlyjz. We will :

use this expression dfin Section VIl upper bounded byE [S2/D,,] multiplied by a coefficient that
only depends on the second and third normalized moments of

o times between loss evert§”) and#(). The knowledge of the

B. Protocol-based derivation of shot shapes transmission rate slopd,, (which is a function of the round-

In some cases, we can make useudtocol informationto trip time) is not needed in the result. This upper bound on
derive the shape of shots, instead of measurements as inttievariancel’y in case of long-lived TCP flows has then the
previous method. The typical example is TCP, whose dynamgameexpression as the one obtained with “power-b” shaped
shapes the flows and can be captured by analytical modgi®ts in Subsection VI-A, which confirms the importance of
(see [1], [18], [23] for an example of models for long-livedoower-b shots in capturing the dynamics of backbone traffic.
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Theorem 2:Assume that the sequence of inter-loss timesxpectation givem,, = a and D,, = d, we obtain from (12)
is a stationary ergodic renewal process. The variance of thed (13) that
aggregate traffic satisfies

f Eaq [Y2(t
2+4%<2>+%<3>E[55} o[ 0] 3(140572)° &

— 5)

~ 2
_ 3(1+0.57) Dnl Consequently, Corollary 1 and the stationarity}af(¢) imply
Proof: Pick any timet € R, and let/ be the index of the that

2447 + 7B B2 [S,]

Ve <A

last congestion event that occurred beferd’; <t < T, . D,
Denote byE, [Y,5(t)] = E [Y,¥(t)| D,, = d] the k-th moment Ve = A/Ead { | Xn(U)dU] dPa,.p,(a,d)
of the transmission rate of theth TCP flow, given thaD,, = d
d. The Palm inversion formula [1], [3] yields that = /\/ </ Eaa [V (u)] dU) dPa,,p, (a,d)
0
. EY [IT,Hl Y (u)du} = /\/ dEqa [V, (u)] dPa, b, (a,d)
]Ed [Yn (t)] = - ) (6) ~ ~
7 \2+47? +7® / BaalSulap, o (ad)
= - A D (@
where 7(®) = E [r}] is the (non-normalized)-th moment 3(140.57(2)? d
of the times elapsed between loss events, and where the \2+ 47 @ 4 73 /Ead [Sh] APa. b (a.d)
superscript 0 means that the expectation is taken conditionally - 3(1+0.57()? d mEn
to T <t < Tjy;. Inserting (4) in the numerator of the right- 24+ 47@ 13 182
hand side of (6), we find that, for = 1, T M3 1t05:@)2 (1105722 [D*J
EY [V, (T))] 7 4+ Eq [A,] 7@ whereP,, p, is the joint probability measure of,, andD,,.
Eq D/n(t)] = 27 (D) . (7) O

This theorem enables us to link the poweused in the
and, fork =2, parametric shot model of Section VI-A with the burstiness
By [Y2()] = of the congestion events. It is interesting to look at some
particular sequences of congestion events, to see to which
1EG [V2(T)] 7P + 3ES [Ya(T0)] Ea [An] 73 + $Eq [A3] 7®  value ofb they correspond. ,
(1) 8‘ (i) When times between congestion events are equal £ 1),
(8) the variance of backbone traffit is upper bounded by
(28/27)AE [S%/D,,]. This is slightly larger than what we
obtain withrectangularshots.
(i) When congestion events follow a homogenous Poisson
ES [Yn(Tz)} = 2E, [A,] (1) ) process £(9) = i!), the variance of backbone traffic. is upper
bounded by(4/3)AE [S2/D,], exactly the same variance we
Similarly, elevating both sides of (4) to the square and takirgptain withtriangular shots.

Since Ej Yo (Ti51)] = EY [Ya(T1)] = Eq [Ya(T))], set-
ting t = T';,1 in (4) and taking expectations, we find that

expectations, and using (9), we find that (iii) Burstier congestion processes result in larger values. of

_ 4 2
EY [Y,f(Tz)] =3 (2 (Ed [A,] 7(1)) +Ey [Ai] 7(2)> ) VIl. PRACTICAL USE OF THE MODEL
(10) A. Moments of?(¢) and averaging interval
Inserting (9) in (7), we obtain In reality, the total measured rafe(t) at a certain timet
. ) is computed by averaging and sampling the volume of data
Ea [Yn(t)] = Eq [Ay] 7 (1 +0.573). (11) (e.g., number of bytes) that cross the backbone link during a
short time intervaly aroundt:

Now, taking expectations on both sides of (1) and remember- (k1)

ing that X,,(t) = Y,,(t) for 0 < ¢ < d, we obtainE, [S,,] = R(t) = 1 R(s)ds,

Ea[Jy" Xa(w)du| = [i'Eq V()] du = dBq [V (1)], be- 0 Jis

causeY,, (t) is stationary. Therefore, we can write (11) as With ¢ € [k6,(k + 1)d), k € Z. § denotes the length of
the averaging and sampling period. The measured Réte

Eq[An] = Ea[S,] /(drD (1 +0.572))). (12) appears thus as a piecewise constant function, with segments

of lengthé. It amounts to convolve the instantaneous iate)

by a linear filter of impulse responsg,<,.s, before taking

the samples. Except for the first one, the momentsfi(if)

depend ory: the longer the averaging interval, the smoother

the total rate (at least for non self-similar traffic). We can

compute that the variance df(t) (the measured variance) is

Likewise, inserting (10) and (9) in (8), we obtain
1 2
Eq [Y2(t)] = 3 <2E?1 [A,] (7(1)) +Eq [42] @
+3E3 [ A, 7 + By [42] 7P /7 D) . (13)

Let us now compute the upper bounddg by conditioning A2 J
on A, = a. Denoting E.4[] the operator of conditional Vr = 5/0 (1 =7/8)Cr(r)dr, (14)
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with Cr(7) = E[R(t — 7)R(t)] — E [R?(t)] being the auto- provides the same information about the traffic. The latter
covariance function of the total rafe(t). We give the expres- could however provide additional, more detailed information.
sion of Cr(7) in Theorem 2 in [4].

Since Cr(1) < Vi, the above expression 6f; is always VIII. EXPERIMENTAL VALIDATION
smaller thanVgk. The scaling factor betweelr and Vi
requires the knowledge a@f'r (7). Clearly, if Cr(7) does not
decrease too rapidly if®, 6], both variances will remain close

In this section we validate our model using the traces
collected on the Sprint IP backbone, and presented in Sec-

. ion Ill. We compare the real coefficient of variation of the
to each other. Consequently, we do not take into account tto?al rate 5 — W/]E [R], with the results obtained from
averaging of the data rate in the model, but we rather keep PR = B :

small so thatCr(7) remains close t@'z(0) = Vg in [0,]. our modelpr = 4/ AE [fOD” X,%(u)du}/()\lﬁl [Sk]), when the
VR can then be safely used as an approximatiolgfwhich

i inputs of the model (i.e., flow arrival rateand the expectation
models the variance of the measured samples of the total r%tPS2/Dn) are directly derived from the traces. Samples of
° .

Taking large values ob amounts to smooth the traffic andy,g tota) rate are computed using averaging intervals of 200
hence to make the measured variahgesensibly smaller than o This is comparable with the average round-trip time we

Vr. Not_e that one can always compLﬁt’eg_by plugging the L aasure on these links (Section VII-A).

expression oU(7) given by Theorem 2 in [4]. Even if experimental data are in good agreement with
Before using our model, an ISP has to choose a valae assymptions 1 and 2, the measurement process introduces two

the averaging interval. It can be the longest busy period (I.§ifferences with the model of Section V. We already addressed

period where the utilization of the link is 100%) allowed bynase two differences.

the ISP. It is also the mj[erval below which the ISP does ngs The first difference is the averaging and sampling of the

care about the congestion of the network, possibly becayagasyred rate at a periodicity of 200 ms, which will lead to an

this short-term congestion is absorbed by the buffers at tgnerimental value of variancé, smaller than the variance

inputs of Imks.. If the cho§en valugis small enough.so that of the instantaneous raféx, as explained in Section VII-A.

the auto-covariance functiafiz(r) slowly decreases ift, 3], \we have indeed observed on experimental data that the longer

VR can be used by the ISP as an approximation of traffige averaging interval, the smalléf;. Therefore, we expect

variability (for network dlmen5|on|ng_ issues), otherwi8& g find a few occurrences of an empirical valig smaller

has to be computed and used (using (14) and Theoremy2n, the lower bound ofiry obtained with rectangular shots.

in [4]). In what follows, we will choose as averaging intervalij The second difference is the splitting of flows located on

the (average) round-trip time of flows (200 ms), since we knoje poundaries of the 30 minutes intervals. As we explained in

that most of the flows take more than one round-trip time Qqtion |11, the number of these flows is very small compared

end. Our choice is also motivated by the fact that TCP flowg the total number of flows that arrive in the intervals, and
update their transmission rates approximately once per rousgls splitting has therefore a negligible impact.

trip time. Recall that the averaging interval is a parameter thatThese two sources of errors are unavoidable: the first
can be set by the ISP to any other value than the round-tRe pecause traffic is packet-based and not fluid, so that
time, depending on the maximum burstiness it tolerates at i, measurements must be averaged over intervals of some
inputs of the links of its backbone. minimal length, and the second one because we need to divide

the trace into intervals short enough to keep the arrival process
B. Complexity of the model stationary and to reduce the volume of data to manipulate.

Our model requires few parameters to characterize the
backbone traffic. The first two moments of the traffic cafi- Results
be computed with only three parameters; E[S,], and In this section we do not present results on the first moment
E [SZ/DH]. of the total rate, since it is computed by our model and by

In this paper, we compute the parameters of the modakasurements in exactly the same way. We only present results
off-line. We infer their values from statistics on the proeoncerning the coefficient of variation of the traffic. All figures
cesses{S,} and {D,}. The computation is simple and itpresented in this section are plotted using the log-log scale.
only requires an averaging over the different samples of theln Figure 5 we compare the coefficient of variation com-
processes. An implementation of the model would require poted via measurementgy) with that given by our model
online computation of these parameters with, for example, ) with parabolic shotsi(= 2). These results refer to the
Exponentially Weighted Moving Algorithm, such as the onérst definition of flow using the 5-tuple. Each point in the
used by TCP to estimate the average round-trip time. figure corresponds to a 30 minutes interval. A cross indicates

We leave the problem of the online estimation of ththat the average rate during that interval is below 50 Mbps; a
parameters of our model for future research. Our main otsiangle is used for those intervals with an average rate between
jective in this paper is to validate the model and to show B0 and 125 Mbps; the dots are used for rates above 125 Mbps.
usefulness for provisioning and managing IP networks. Givaie x-axis shows the measured coefficient of variation of the
that our model requires few parameters, we believe that ittigtal rate, while the y-axis shows the coefficient of variation
simpler (in term of computation cost and implementability iigiven by the model. A point on the diagonal crossing the
an operational environment) than a packet level model tHfgure represents a perfect match between the model and the
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Parabolic Shots (b = 2) 12
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%
30-minute intervals {%)
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3 a 5
Power b of the rate function

Coefficient of Variation from the model (%)

Fig. 6. Powerb of flow rate functions with flows defined by the 5-tuple
10 :
10° 10" 10°
Measured Coefficient of Variation (%) 10°

Rectangular Shots (b = 0)

Fig. 5. Coefficient of variation of the total rate with parabolic shots and
flows defined by the 5-tuple

measurements. The two dashed lines identify the bounds for
an error in the estimate of 20%. We notice a good match
between the model and the measurements. Rectangular and
Triangular shots (results not included for lack of space) often
under-estimate the real coefficient of variation since they do
not capture all the dynamics of flow rates.

The above figure shows three clusters of points, that can be ) ‘
easily distinguished. The interpretation is simple and is related w’ Measured Coeficontof Variation (%) w’
to the fact that we are collecting traces on many diverse links,
with three main different utilization levels (Section IIl). AsFig. 7. Coefficient of variation of the total rate with rectangular shots and
we will explain in Section IX-.1, backbone traffic becomedoWs defined by destination address prefix

smoother when the arrival rate of flows increases. An «jjytes” the impact of specific transport protocol mechanisms
increase in the arrival rate of flows is the main responsible fgf, the total rate. We also note that some points are above the
the increase in the utilization among the links, since it is Safeé‘?agonal, meaning the measured variance is smaller than the
assume that the average file size is the same on all links of {hgi3ce predicted by the model with rectangular shots, in an
backbone (Corollary 1). Links with higher utilization (aboveapparent disagreement with [4, Theorem 3]. This is due to the
125 Mbps) exhibit very low variation, and, thus contribute ton_zer0 averaging interval, as explained in Section VII-A.

the first cluster of points at the bottom-left corner of the figure. This result shows that our model can estimate the total rate

Those links with a medium utilization (between 50 and 123, jis variance independently of the protocol or application
Mbps) are represented by the cluster in the middle. Finally,

; . ) L RRaracteristics. The ability of defining a flow through the
links with the lowest utilization (below 50 Mbps) exhibit theyestination prefix greatly reduces the complexity of a possible
highest traffic variability (around 30%), and yield the clust&fjementation. Indeed, on our traces, the number of flows of

of points on the right-hand side of the figure. which a router would need to keep track is reduced on average
In Section VI-A, we explained how the optimal poweean . one order of magnitude when using a /24 destination

be computed from a trace so that the variance of the total rafefix A straightforward extension to this flow definition

given by our model/, matches that given by measurementg,, |4 pe the use of “routable” prefixes (i.e., prefixes present
Vr. For the different 30 minutes traces, we compute thjg e forwarding table of the router) to define flows. Such an
optimal power and we plot its histogram in Figure 6. Thgyension would result in an additional decrease of the burden

average value ob over all the traces is equal 1098, which o the router given the level of flow aggregation (with /8 and
means that parabolic shots are in average the most suited4fg prefixes, for example) that could be achieved.
model traffic when flows are defined by the 5-tuple (from '

variation point of view). We are currently working on the

interpretation of the difference in the value bfamong the IX. APPLICATION OF THE MODEL TO NETWORK

traces. A possible reason could be the difference in file sizes: DIMENSIONING AND MANAGEMENT

small files require a large value bdue to the slow start phase We discuss in this section some applications of our model

of TCP, and large files require a small valueloflue to the to network dimensioning and management. The list is not

slow window increase in TCP congestion avoidance mode.exhaustive, but it is enough to highlight the role that such a
Figure 7 provides the coefficient of variation for the seconmiodel may have in the engineering of IP backbone networks.

definition of flow based on destination address prefixes. WeSuppose that an ISP collects statistics on flow sizes, flow

plot the case with rectangular shots € 0). The use of durations, and flow arrivals (for example with tools such as

rectangular shots seems to be able to capture the variabilityGi$co NetFlow). With this sole information, the ISP is able

the traffic aggregate at the level of destination address prefixtes compute the moments of the total rate. This way, the ISP

This is probably due to the fact that such a level of aggregatimmould have more detailed information than that provided by

1071

Coefficient of Variation from the model (%)
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SNMP (one of the problems of SNMP is that it does nat large averaging intervalyz needs to be corrected using
capture traffic variation at short time scales). (14). The functionA(e¢) can be computed using the Gaussian
The information on flows can be collected on the link wapproximatiod, which gives for example4(0.05) = 1.96.
want to monitor. It can also be collected at the edges of thghen the arrival rate of flows increases, the bandwidth of
backbone. Combined with the routing information in the edghe backbone links has to be increased as well, since the
routers, this will give information on flows on each link of thdirst and second moments &f(t) increase with\. However,
backbone. Our model can then be used to compute the trafficile the first moment ofR(¢) increases as, the standard
on the links of the backbone, by only monitoring the edgesdeviation of R(t) increases as/\. This indicates that the
The detailed information provided by our model on theoefficient of variation of?() decreases as//\. Concretely,
traffic helps to dimension backbone links. Given the charactéhis means that the traffic in the backbone becomes smoother
istics of flows composing the traffic, the links of the backbonand smoother when more and more flows are multiplexed. The
network can be dimensioned so as to avoid congestion. Notsnsequence of this smoothing is that the ISP does not need to
that for a highly variable traffic, dimensioning the links of thescale the bandwidth of its links linearly with (S)He can gain
backbone based only on the average utilization is not enoughbandwidth by accounting for the smoothing of the traffic.
to avoid congestion. Traffic variability should be considered, 2) Impact of flow sizes and flow duration§ve study in
which is allowed by our model. Rate variation at short timthis section the impact of the sizes of floys,} and their
scales are very useful in the definition of the buffer size amtiirations{D,,} on the first two moments of the traffic, and
in the evaluation of the maximum queuing delay. In the ca$ence on the dimensioning of the backbone.
we collect information on flows at the edges, our model can The average rate of the backbone traffic depends only on
help in routing flows in the backbone, with the objective t& [S,] (Corollary 1). The study of the variance of the traffic
optimize the utilization of the available resources. is more complicated since the varianbg depends on the
Computing the traffic in the backbone using informatioshot shape, and on the joint distribution £§,,} and {D,,}
on flows is not the only application of our model to networkCorollary 1). We focus on the “power-b” shots of the form
dimensioning and management. A key problem the operat8u) = au®, b > 0. As shown in Section VI-A, the variance
faces is the planning of the upgrades of the backbone linkd, the traffic in presence of such shots only depends on
in order to maintain the absence of congestion. What is the[S2/D,,| (with a multiplicative factor function of the flow
impact on the link utilization caused by a change in tharrival rateA and the poweb). Section VI-B shows that this
distribution of flow sizes, due for example to the arrival ofelationship also holds in case of long-lived TCP flows. For the
a new application or the addition of a new big cluster gfame average flow size and the same average flow duration, the
servers resulting in large transfer sizes? What is the impdietckbone traffic may have different variation if we consider
on the link utilization caused by a change in flow durationglifferent joint distributions of{S,,} and {D,}. To simplify
due for example to an increase in the number of users in e analysis of the variance, we consider the two extreme
congested access networks, resulting in longer flow duratiors®es: (i)S,, and D,, are independent, and (ii§, and D,
What is the impact caused by a simultaneous change in flafg strongly positively correlated. These two cases provide
sizes and durations, due for example to an upgrade of ti&spectively upper and lower bounds on the variance of the
access networks, resulting in shorter flow durations but largaackbone traffic.
file transfers? What is the impact on the traffic of a chand® When S,, and D,, are independent, the variance of the
in the shot shapeX,,(-), which may follow a change in the traffic V is proportional toE [S2] E[1/D,]. This value can
application or in the transport protocol? The model presentbé considered as an upper bound on the variance of the traffic
in this paper can be used to answer these important questidhscase of negative correlation betweé and 1/D,,. We
We illustrate this application by the following two exampleswill assume that such a negative correlation holds, which
The first example shows the impact of a change in the fl&s¢ems a reasonable assumption since the larger the size of
arrival rate) on the traffic, and hence on the dimensioning di flow, the longer in average its duration. We note here that
the backbone. The second example shows the impact of #e is proportional to the variance of,. Vr can be very
sizes and the durations of flows. large when the sizes of flows are heavy-tailed. Two sets of
1) Impact of the flow arrival rate:Consider the case whenflow sizes having different variances result in different traffic
the joint distribution of flow sizes and flow durations igvariability, even if their averages are the same. The taiDpf
stationary over long time intervals, and does not depend on ees not have an impact on the variance, sifggeis in the
flow arrival raté. Suppose that the ISP sets the bandwidth genominator, but for the very same reason, small valuds,of
its links tolE [R(t)]+A(e)\/Vr, whereA(e) is thee-quantile of can leadVy to be very large.
the centered and normalized total rét¢), i.e., the value such ~ We check the correlation betweet} and1/D,, using our
]}D{R(t) > (IE [R(t)] + A(E)\/VT%)} =¢ 0 <e< 1. ¢is the traces. The above upper bound is correct if these two random
congestion probability. The momentsBft) in this expression Vvariables are always negatively correlated. For each 30 minutes
of the bandwidth are given by our model (Corollary 1). Foirace, and using both definitions of flow (/24 prefix and 5-

tuple), we compute the coefficient of correlation betwegn

2|n the other case, a model has to be developed for the rest of the Internet,
to evaluate the impact of a change in the arrival rate of flows on the joint3Since the total rate is the resut of multiplexing f(t) flows of
distribution of flows sizes and flow durations. We will address this probleindependent rates, the Central Limit Theorem tells us that the distribution
in a future research. of R(t) tends to Gaussian at high load, which is typical of backbone links.
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Correlation coefficient of S: and 1/D,

when S,, = rD,, the variance changes only if eitheror the
average traffidE [R(t)] does. For example, whenincreases
(due for example to an upgrade of user access lines or to
a change in network protocols), the coefficient of variation
of the total rate increases agr, even though the average
utilization is the same (the traffic in the backbone becomes
more variable). The increase in the coefficient of variation
is less important than the increaserirdue to the statistical
multiplexing of flows in the backbone. The ISP can then use
e this result to anticipate the increase in traffic variability, and
R oS to appropriately upgrade the links of its backbone.

To illustrate the impact that the correlation betwegnand
Fig. 8. The coefficient of correlation betweet? and 1/D,, for 5-tuple

(top) and /24 destination address prefix (bottom) definitions of flow, and ch” can h_ave on the variance of the traffi;, we consider
each 30 minutes long trace the following example, wheré,, and D,, are generated from

Pareto distributions, but with same average values as those
and1/D,. The results are plotted in Figure 8. All the tracegptained from the traces. Denote By(resp.D) the average
present negative correlation coefficient, which validates odize (resp. the average duration) of flows obtained from
assumption. We notice in the figure the small value of th@easurements. Our idea is to control the correlation between
correlation coefficient, which is mostly due to the high levet and D,,, while keepingE[S,] = S and E[D,] = D.
of multiplexing in the backbone. The variance of the traffic ishis control is not possible without the following artificial
then close to that given by the above upper bound. construction of flow sizes and durations.

(i) The second case, which provides a lower bound on A Pareto random variabl& has a Cumulative Distribution
the variance of the traffic, corresponds to a strong positigginctionP {V < v} = 1—(v/a)~? [17]. a > 0 is the starting
correlation betweerb,, and D,,. We suppose that these twopoint of the variable ang > 1 its shape parameter. The mean
variables are proportional to each other via a positive constajita Pareto random variable is equalEdV] = a5/(3 — 1).
r,i.e., S, =rD,, Vn. Note that the correlation coefficient ofThe variance of a Pareto random variable increases when its
S, and D,, is here equal to its maximum value 1. shape parametet decreases, and becomes infinite wiier

The quantityr can be seen as the individual throughput, The Pareto random variable is said to be heavy-tailed, since
of flows. There are many scenarios in which the throughpig tail decreases polynomially rather than exponentially. This
of a flow can be independent of its size. This is generalfyariable is often used to model the heavy-tailed nature of the
the case when the duration of the flow is long compared #stributions of flow sizes and flow durations in the Internet
its transient phase. In case of TGPcan be the throughput (see [2], [11], [24] for examples).
imposed by the receiver advertised windowcan also be  First, we assume that the marginal distribution $f is
the throughput imposed by the available bandwidth in thegreto, with shape parametgls and of averageS. We
network (i.e., Internet access via a slow modem line), or ynsider two values foBs: 1.5 and 2.5. We defin®,, as
the congestion control mechanisms of TCP. We refer to [25] _

for a discussion on the different possible meanings.of D, = wgSn + (1 —w)Vy, (15)
It is easy to see that a strong positive correlation between
S, and D, provides indeed a lower bound on the variance Qfhere v, is a Pareto random variable, with shape parameter
the traffic V. Applying Holder’s inequality to the product of and of averageD. independent ofS. and wherew
the two random variables,, //D,, and/D,,, we have that Bp av ge, | P n W i 6
[0,1]. We give two values t@p: 1.5 and 2.5. The coefficient

E2[S,] = E [ Sh \/D—] w is used to vary the correlation betweSh and D,,; when
" VD, " w = 0, both variables are independent Pareto variables; when
S\ 2 5 52 w = 1, both variables are maximally correlated. Note that the
< E (@) E [x/Dn ] =E {Dn] E[D.], average value oD),, generated according to (15) is equal to
D. If Bp and3s are larger than 2, we can compute that
from which we obtain the following lower bound on _
E [S2/D,] (and therefore ofVg): w— COV[Dy, Si]S. (16)
V AR[S,|D
S2 E2 [S,] .
E D > E[D,]° Second, we giveS,, the values we measure on our traces,

while generatingD,, according to (15).V,, is still a Pareto
The bound is reached whefl, = D, for somer > 0 random variable, with shape parametey and of averageD,

(in which caseS,, and D,, have a maximal correlation), andindependent of5,,.

is equal toE [S2/D,| = rE[S,]. Contrary to the case We plot the variancé/z as a function ofw for different
where S,, and D,, were independent, the variantg is now values of3s, 8p, S and D. We consider rectangular shots
only sensitive to the average flow size and to the individué = 0), which yieldsVy = AE [S,,QL/D"]. The plots are shown
throughput of flows. We directly compute that it is equal toin Figure 9. The value of the flow arrival rateis computed
(b+1)%/(2b+1)rE[R(t)] for power-b shots. This means thafrom the traces. Figure 9 shows the plots obtained when both
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TS ::; without any constraint on the definition of flows, nor on the
bzz application or the transport protocol.
bi-zeib-2s We are working on various extensions of our work. We state
in [4] a result for the auto-covariance function of the total
rate. Using this result, we are investigating the correlation of
Internet traffic and its relation with the flow arrival process,
the shot shape, and the distributions of flow sizes and flow
durations. We are also studying the gain of introducing classes

n
@

¥, (Mops”
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Variance of the traffic

o of ez ez g e’ we a7 os os 1 of flows with a different shot for each class. This will solve
- 550 Hower, a1 S - 16.6Kbytes b 0. 5,560 the problem when the flow rate functions do not have the
wf o STl same distribution. Finally, we are evaluating the worthiness of
af o R | considering more complex flow arrival processes than Poisson.
2 v Foaeh-2s The challenge is to improve our evaluation of the traffic
o ?% 1 without much increasing the complexity of the model.
2.
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